
t ionali ty constant (an exper imenta l  value) in the co r re l a t ion  function u 'v '  = ~- klq2; ~ = 0.011, turbulence 
constant in Prandtl  equation for let flows; a = 12, s imi la r i ty  coordinate for turbulent  mixing. Indices:  ~, x, 
y,  t ,  der ivat ive  of the respec t ive  funct ionwith  respec t  to the coordinates  7}, x, y, and t;  e, outer boundary of 
the viscous layer ;  i = 0, 1, 2, 3, and 4, numbers  of the coefficients a i. 
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A P P R O X I M A T E  M E T H O D  OF C A L C U L A T I N G  T H E  

T E M P E R A T U R E  P R O F I L E  IN A S E M I T R A N S P A R E N T  

M E L T I N G  M A T E R I A L  

A .  S. S e n c h e n k o v  UDC536.12:536.35 

The in tegral  two-pa rame t r i c  method is used to  calculate the t empera tu re  profi le  in a s emi t r ans -  
parent  melting mater ia l ;  the method takes the specif ics of the problem unde r  study into account.  

The velocity for the removal  of the mass of vi t reous heatproof  mater ia l s  under heating action is de t e r -  
mined to a significant degree  by the t empe ra tu r e  profi le  near  the sur face ,  a fact which is re la ted to the strong 
dependence of the viscosi ty  of these  mater ia l s  on the t em p e ra tu r e .  Since most vi t reous heatproof mater ia ls  
a re  semi t ransparen t ,  the t empera tu re  profi le  also de te rmines  the amount of heat emitted by the mater ia l .  

At the same t ime,  as the resu l t s  of the numer ica l  calculations show [1], the exponential approximations 
of a t r ansparen t  fi lm and an opaque f i lm and the approximation of radiant  the rma l  conductivity do not guarantee 
the sa t i s fac tory  accuracy  in calculating the t empera tu re  dis t r ibut ion near  the surface  if the optic thickness of 
the liquid fi lm has the order  of unity (typical for many heatproof mater ia l s ) .  

Below we propose an approximate method for calculating the t empera tu re  dis tr ibut ion in a s emi t r ans -  
parent  mater ia l  that is applicable for  the case given. 

The f rac tu re  of heatproof mater ia l s  under heating is descr ibed  by a sys tem of equations of continuity, 
motion, energy,  and emiss ion  t r an s f e r  With corresponding boundary conditions [2]. We limit ourselves  in the 
presen t  study to  the energy equations.  We can wri te  the equation for a s ta t ionary reg ime of f rac tu re  in dimen-  
s ionless  form [1,2] 

d ( d ~ y _ ~ O _ f , = O  ' (1) 

o (0)  = 1, o ( o ~ )  = o T 
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Fig.  1. T e m p e r a t u r e  profi le  in ma te r i a l :  a, YR = 0.2; b, 
YR = 0.8. Dashed l ines ,  numer ica l  solut ion [1], solid l ines,  
approx imat ion  solution; 1) b i p a r a m e t r i c  method; 2) 
opaque f i lm [1]; 3) t r a n s p a r e n t  f i lm [1]; 4) radiant  t h e r m a l  
conductivity.  

By integrating Eq. (i) within the limits from y to ~ and disregarding the emission of the cold regions 

of the material, we obtain 

dO 
- - +  0 - - 0 ~ - - ~  = 0. (2) 
@ 

The quantity of the densi ty of the e m i s s i o n  flow is de te rmined  by the t e m p e r a t u r e  prof i le  and by the 
the rmoop t i c  p rope r t i e s  of the m a t e r i a l .  Fo r  a g r ay  body, f is a function of the in tegra l  containing the 
fourth degree  of t e m p e r a t u r e  [1, 3]. Thus ,  Eq. (2) is a nonlinear in tegrodif ferent ia l  equation. 

The approx ima te  solution of energy  equation (1) is found by the in tegra l  method. The t e m p e r a t u r e  
d is t r ibut ion  is approximated  by a t w o - p a r a m e t r i c  family  of functions:  

0 = 0 (y, A, B). (3) 

We must  wri te  two conditions to  de t e rmine  the unknown p a r a m e t e r s  A and B. One of these  follows 
f r o m  the law of energy  conservat ion ,  

dO 
- - ( 0 ,  A, B ) +  1 - - 0 T - - f ( 0  , A, B) = 0 .  (4) @ 

The second condition is usually de te rmined  by the in tegra t ion of Eq. (1) with any weighting function. 
The method leads,  on the ave rage ,  to a sufficient  approximat ion  of the t e m p e r a t u r e  profi le  along the whole 
~hiekness of the m a t e r i a l .  However,  significant deviat ions f r o m  the t rue  t e m p e r a t u r e  d is t r ibut ion  a re  pos -  
s ible  in s epa ra t e  s e g m e n t s .  A c h a r a c t e r i s t i e  of the p rob lem is the necess i ty  of a good approx imat ion  of 
the t e m p e r a t u r e  profi le  near  the su r faee  in the layer  with the optic th ickness  of the order  of unity, s ince 
this  par t  of the prof i le  de t e rmines  the quantity of heat emit ted by the m a t e r i a l  and the veloci ty of tjhe r e -  
moval  of the m a t e r i a l  in the fluid phase .  

Thus ,  we a s s u m e  that  as a second condition for de te rmin ing  p a r a m e t e r s  A and B we can use the con-  
dit ion of rea l iz ing,  "on the ave rage , "  Eq. (1) in the su r face  layer  of the m a t e r i a l  with the optic th ickness  
equal to  unity. By in tegra t ing Eq. (1) within the l imits  f r o m  zero  to YR (YR is the mean  f ree  path of the 
emiss ion) ,  with (4) t aken  into account,  we obtain 

dO d--y (YR' A, B)+ O(y R, A, B)--O,--[(y R, A, B ) =  0. (5) 

Thus ,  the in tegra l  method for (1) reduces  to the col locat ion method for Eq. (2). The points of the 
col locat ion a r e  points y = 0 and y = YR. 

Af ter  solving (4) and (5) toge ther ,  we find the values for  the p a r a m e t e r s  A and B. 

We eompare  the r e su l t s  of the suggested method with the r e su l t s  of the numer ica l  calculat ions [1], 
The densi ty  of the e m i s s i o n  flow is calculated according  to  the equat ion in [1]: 

Y@Y' l]O~(y')@ ' , y ~  (6) 
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where f- is the density of the flow of self-radiation at constant temperature in the material (O -1) and in 
the absence of reflection; Reff is the effective reflectivity of the surface of the material from a side of the 
body. 

The temperature profile is approximated by the dependence 

0 ---- (I + Ay 2) exp (-- By). (7) 

In Fig. 1 we provide the comparison of the temperature distribution in heatproof materials which is ob- 
tained by various approximate methods and the distribution obtained by numerical methods. Curves a cor- 
respond to the case when the optic thickness of the film has the order of unity, and curves b to the case 
when the optic thickness of the film is considerably less than unity. As we see, in both cases the bi- 
parametric method reflects the character of the temperature variation in heatproof materials very well. 

The errors in calculating both the velocity of the removal of mass in the liquid phase and the degree 
of blackness in the material are determined according to the results obtained. The error for calculating 
the velocity does not exceed 10% in the cases studied, while the approximation of the opaque film exceeds 
this quantity two times. The error in approximating the transparent film depends considerably on the 
optic thickness of the film and increases from 10% for YR = 0.8 to 60% for YR = 0.2. The approximation 
of the radiant thermal conductivity yields the greatest error; the velocity of the removal of mass is ex- 
ceeded by an order. 

Concerning the degree of blackness, the error of the approximate methods inthe cases studied lies 
within these limits: the biparametric method and the approximation of the opaque film is from 3 to 10%, 
and the approximation of the transparent film is from 30 to 35%. 

Thus, the integral biparametrie method is accurate enough in practice for calculating both the 
removal of mass in the liquid phase as well as the degree of blackness in cases when the optic thickness 
of the liquid film has an order of unity or less than unity. 

N O T A T I O N  

6, dimensionless temperature; OT, dimensionless temperature inside body; y, dimensionless 
coordinate along normal to body; YR, dimensionless free path length of emission; f, density of emission 
flow. 

I, 

2. 
3. 
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