tionality constant (an experimental value) in the correlation function u'v' = + kiqz; ® = 0,011, turbulence
constant in Prandt]l equation for jet flows; ¢ =12, similarity coordinate for turbulent mixing, Indices: 7, x,
y, t, derivative of the respective function with respect to the coordinates 7, x, y, and t; e, outer boundary of
the viscous layer; i=0, 1, 2, 3, and 4, numbers of the coefficients «j.
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APPROXIMATE METHOD OF CALCULATING THE
TEMPERATURE PROFILE IN A SEMITRANSPARENT
MELTING MATERIAL

A, S. Senchenkov UDC 536.12:536.35

The integral two-parametric method is used to calculate the temperature profile in a semitrans-
parent melting material; the method takes the specifics of the problem under study into account.

The velocity for the removal of the mass of vitreous heatproof materials under heating action is deter-
mined to a significant degree by the temperature profile near the surface, a fact which is related to the strong
dependence of the viscosity of these materials on the temperature., Since most vitreous heatproof materials
are semitransparent, the temperature profile also determines the amount of heat emitted by the material,

At the same time, as the results of the numerical calculations show [1], the exponential approximations
of a transparent film and an opaque film and the approximation of radiant thermal conductivity do not guarantee
the satisfactory accuracy in calculating the temperature distribution near the surface if the optic thickness of
the liquid film has the order of unity ¢ypical for many heatproof materials),

Below we propose an approximate method for calculating the temperature distribufion in a semitrans~
parent material that is applicable for the case given.

The fracture of heatproof materials under heating is described by a system of equations of contimity,
motion, energy, and emission transfer with corresponding boundary conditions [2]. We limit ourselves in the
present study to the energy equations. We can write the equation for a stationary regime of fracture in dimen-

sionless form [1, 2] PR .
M(—*-ye-fw—-o, (1)

8(0)=1, 6(cc)=8,.
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Fig. 1. Temperature profile in material: a, yg = 0.2; b,

yR = 0.8. Dashedlines, numerical solution [1], solid lines,
approximation solution; 1) biparametric method; 2)

opaque film [1]; 3) transparent film [1]; 4) radiant thermal
conductivity.

By integrating Eq. (1) within the limits from y to = and disregarding the emission of the cold regions
of the material, we obtain

B o—p,—f=0. (2)
dy

The quantity of the density of the emission flow is determined by the temperature profile and by the
thermooptic properties of the material, For a gray body, f is a function of the integral containing the
fourth degree of temperature [1,3]. Thus, Eq. (2) is a nonlinear integrodifferential equation,

The approximate solution of energy equation (1) is found by the integral method. The temperature
distribution is approximated by a two-parametric family of functions:

0=0(y, 4, B). @)

We must write two conditions to determine the unknown parameters A and B. Cne of these follows
from the law of energy conservation,

SS—(O, A, B)+1—6,—F(0, A, B) =0. @)

The second condition is usually determined by the integration of Eq. (1) with any weighting function,
The method leads, onthe average, to a sufficient approximation of the temperature profile along the whole
thickness of the material. However, significant deviations from the true temperature distribution are pos=-
sible in separate segments, A characteristic of the problem is the necessity of a good approximation of
the temperature profile near the surface in the layer with the optic thickness of the order of unity, since
this part of the profile determines the quantity of heat emitted by the material and the velocity of the re~
moval of the material in the fluid phase,

Thus, we assume that as a second condition for determining parameters A and B we can use the con-
dition of realizing, "on the average," Eq. (1) inthe surface layer of the material with the optic thickness
equal to unity. By integrating Eq. (1) within the limits from zero toyp (g is the mean free path of the
emission), with (¢) taken into account, we obtain

do ' '
E(va Ar B)+e(va A’ B)—GT——f(yR, A: B):() (5)
Thus, the infegral method for (1) reduces to the collocation method for Eq. (2). The points of the
collocation are points y = 0 and y = ygR.
After solving (4) and (5) together, we find the values for the parameters A and B.

We compare the results of the suggested method with the results of the numerical calculations [1].
The density of the emission flow is calculated according to the equation in f1]:

31 [GXP (— M) sign(y—y') + R exp (— L}£>]94 () dy', (6)

R Yr R

f(y)=j~
| y

0
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where f is the density of the flow of self-radiation at constant teinperature in the material (9 =1) and in
the absence of reflection; Regt is the effective reflectivity of the surface of the material from a side of the
body. ‘

The temperature profile is approximated by the dependehce
8 = (1 4 Ag*) exp(— By). (7)

In Fig. 1 we provide the comparison of the temperature distribution in heatproof materials which is ob-
tained by various approximate methods and the distribution obtained by numerical methods. Curves a cor-
respond to the case when the optic thickness of the film has the order of unity, and curves b to the case
when the optic thickness of the film is considerably less than unity, As we see, in both cases the bi-
parametric method reflects the character of the temperature variation in heatproof materials very well,

The errors in calculating both the velocity of the removal of mass in the liquid phase and the degree
of blackness in the material are determined according to the results obtained, The error for calculating
the velocity does not exceed 10% inthe cases studied, while the approximation of the opaque film exceeds
this quantity two times. The error in approximating the transparent film depends considerably on the
optic thickness of the film and increases from 10% for yp = 0.8 to 60% for yg = 0.2. The approximation
of the radiant thermal conductivity yields the greatest error; the velocity of the removal of mass is ex~
ceeded by an order. ’

Concerning the degree of blackness, the error of the approximate methods in the cases studied lies
within these limits: the biparametric method and the approximation of the opaque film is from 3 to 10%,
and the approximation of the transparent film is from 30 to 35%.

Thus, the integral biparametric method is accurate enough in practice for calculating both the
removal of mass in the liquid phase as well as the degree of blackness in cases when the optic thickness
of the liquid film has an order of unity or less than unity.

NOTATION

¢, dimensionless temperature; 6, dimensionless temperature inside body; y, dimensionless
coordinate along normal to body; yR, dimensionless free path length of emission; £, density of emission
flow.
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